After the introduction of Persistent Memory in the form of Intel’s Optane DC Persistent Memory on the market in 2019, it has found its way into manifold applications and systems. As Google and other cloud infrastructure providers are starting to incorporate Persistent Memory into their portfolio, it is only logical that cloud applications have to exploit its inherent properties. Persistent Memory can serve as a DRAM substitute, but guarantees persistence at the cost of compromised read/write performance compared to standard DRAM. These properties particularly affect the performance of index structures, since they are subject to frequent updates and queries. However, adapting each and every index structure to exploit the properties of Persistent Memory is tedious. Hence, we require a general technique that hides this access gap, e.g., by using DRAM caching strategies. To exploit Persistent Memory properties for analytical index structures, we propose selective caching. It is based on a mixture of dynamic and static caching of tree nodes in DRAM to reach near-DRAM access speeds for index structures. In this paper, we evaluate selective caching on the OLAP-optimized main-memory index structure Elf, because its memory layout allows for an easy caching. Our experiments show that if configured well, selective caching with a suitable replacement strategy can keep pace with pure DRAM storage of Elf while guaranteeing persistence. These results are also reflected when selective caching is used for parallel workloads.